On Manifold Regularization

نویسندگان

  • Misha Belkin
  • Partha Niyogi
  • Vikas Sindhwani
چکیده

We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning algorithms and standard methods including Support Vector Machines and Regularized Least Squares can be obtained as special cases. We utilize properties of Reproducing Kernel Hilbert spaces to prove new Representer theorems that provide theoretical basis for the algorithms. As a result (in contrast to purely graph based approaches) we obtain a natural out-of-sample extension to novel examples and are thus able to handle both transductive and truly semi-supervised settings. We present experimental evidence suggesting that our semisupervised algorithms are able to use unlabeled data effectively. In the absence of labeled examples, our framework gives rise to a regularized form of spectral clustering with an out-of-sample extension.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Multiple Tasks using Manifold Regularization

We present a novel method for multitask learning (MTL) based on manifold regularization: assume that all task parameters lie on a manifold. This is the generalization of a common assumption made in the existing literature: task parameters share a common linear subspace. One proposed method uses the projection distance from the manifold to regularize the task parameters. The manifold structure a...

متن کامل

Manifold Regularization for SIR with Rate Root-n Convergence

In this paper, we study the manifold regularization for the Sliced Inverse Regression (SIR). The manifold regularization improves the standard SIR in two aspects: 1) it encodes the local geometry for SIR and 2) it enables SIR to deal with transductive and semi-supervised learning problems. We prove that the proposed graph Laplacian based regularization is convergent at rate root-n. The projecti...

متن کامل

Manifold regularization and semi-supervised learning: some theoretical analyses

Manifold regularization (Belkin et al., 2006) is a geometrically motivated framework for machine learning within which several semi-supervised algorithms have been constructed. Here we try to provide some theoretical understanding of this approach. Our main result is to expose the natural structure of a class of problems on which manifold regularization methods are helpful. We show that for suc...

متن کامل

Manifold learning via Multi-Penalty Regularization

Manifold regularization is an approach which exploits the geometry of the marginal distribution. The main goal of this paper is to analyze the convergence issues of such regularization algorithms in learning theory. We propose a more general multi-penalty framework and establish the optimal convergence rates under the general smoothness assumption. We study a theoretical analysis of the perform...

متن کامل

Locality Preserving Semi-Supervised Support Vector Machine

Manifold regularization, which learns from a limited number of labeled samples and a large number of unlabeled samples, is a powerful semi-supervised classifier with a solid theoretical foundation. However, manifold regularization has the tendency to misclassify data near the boundaries of different classes during the classification process. In this paper, we propose a novel classification meth...

متن کامل

Lecture 6: Manifold Regularization

We first analyze the limits of learning in high dimension. Hence, we stress the difference between high dimensional ambient space and intrinsic geometry associated to the marginal distribution. We observe that, in the semi-supervised setting, unlabeled data could be used to exploit low dimensionality of the intrinsic geometry. In order to formalize these intuitions we briefly introduce the mani...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005